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We consider finite driving-rate perturbations of models which were previously seen to exhibit self-
organized criticality (SOC). These perturbations lead to more realistic models which we expect will have
applications to a broader class of systems. At infinitesimal driving rates the separation of time scales be-
tween the driving mechanism (addition of grains) and the relaxation mechanism (avalanches) is infinite,
while at finite driving rates what were once individual relaxation events may now overlap. For the un-
perturbed models, the hydrodynamic limits are singular diffusion equations, through which much of the
scaling behavior can be explained. For these perturbations we find that the hydrodynamic limits are
nonlinear diffusion equations, with diffusion coefficients which converge to singular diffusion coefficients
as the driving rate approaches zero. The separation of time scales determines a range of densities, and,
therefore, of system sizes over which scaling reminiscent of SOC is observed. At high densities the na-
ture of the nonlinear diffusion coefficient is sensitive to the form of the perturbation, and in a sandpile
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model it is seen to have novel structure.

PACS number(s): 64.60.Ht, 02.50.+s, 05.40.+j, 05.60. +w

I. INTRODUCTION

A wide variety of spatially extended dissipative dynam-
ical systems exhibit self-similar characteristics over a
broad range of spatial and temporal scales. Observed
scaling behaviors include the traditional power laws ob-
served in, for example, the magnitude versus frequency
distribution of earthquakes, as well as more exotic scal-
ings such as multifractals which are observed in the
growth patterns of diffusion-limited aggregates. The
range of scales over which this behavior is observed in
such systems is bounded a priori by both microscopic di-
mensions and times at one end and finite-size cutoffs at
the other.

In traditional equilibrium statistical mechanics, scaling
that extends up to the system size is characteristic of
second-order critical points, and scaling that extends over
a broad range is reminiscent of behavior near criticality.
In the context of the open driven systems mentioned
above, Bak, Tang, and Wiesenfeld [1] introduced the con-
cept of “self-organized criticality”’ (SOC), in which the at-
tractor of the dynamics intrinsically displays behavior on
all scales without the obvious tuning of a parameter. The
prototypical examples of such systems are referred to as
sandpile cellular automata. In these models, ‘“sand” is
added one grain at a time to a randomly chosen site on a
lattice. If the local scope (or height) exceeds a threshold,
an avalanche is triggered, and sand falls according to a
prescribed set of rules. Another grain is added to the pile
only when the avalanche is complete, so that all sites are
below threshold. The interesting characteristics shared
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by many of these systems are the lack of intrinsic tem-
poral or spatial scales for the dynamics and a nontrivial
scaling of the avalanche size distribution with system size
[2-5].

While the sandpile models are easy to simulate, analyti-
cal progress remained elusive for quite some time, with
the exception of Abelian models studied in, for example,
Ref. [5]. However, recently Carlson et al. [6] introduced
and studied a class of long-range particle-systems—two-
state models—which exhibit nontrivial scaling like that
observed in sandpile models. The two-state models have
attributes that make them tractable mathematically. In
particular, it was proven that the hydrodynamic limits of
these self-organizing models are described by diffusion
equations in which the diffusion coefficients have singu-
larities at a critical density. This result led to a direct
connection between the scaling in finite systems and an
underlying critical phenomena in the thermodynamic
limit [7]. It was shown that a key exponent—the order
of the diffusion pole—identified various scaling proper-
ties of the open driven systems [8]. More generally, the
presence of a singularity in the diffusion coefficient led to
an explanation of why these systems approach the critical
point as the system size diverges. Many of the results
that were obtained analytically for the two-state models
were seen numerically to apply to a variety of sandpile
models as well [8,9]. For a particular sandpile model, re-
ferred to as the limited local sandpile model [2], there has
been some additional recent analytical progress in obtain-
ing various scaling properties that are associated with the
diffusion limit [10,11]. Thus we have recast the criterion
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for self-organized criticality, namely, the nontrivial scal-
ing of spatial features, temporal signals, and event size
distributions with the system size, in terms of singular
diffusions, where SOC is associated with the existence of
a diffusion singularity in the hydrodynamic limit and the
approach to the critical density as the system size
diverges.

In the two-state models, the diffusion singularities
arose because a conserved quantity could be transported
arbitrarily long distances instantaneously. The analogous
behavior in sandpiles is associated with the feature that
new grains of sand are added only after each avalanche is
complete. This is commonly referred to as the limit of
infinitesimally small driving rates for these models. As
we shall see, this appears to be a necessary ingredient for
self-organized criticality in the strictest sense; in particu-
lar, this feature is required to obtain a singularity in the
diffusion coefficient. However, as we shall also see, this
does not mean that the systems are devoid of interesting
scaling if the driving rate is small but positive. One
should not reach the conclusion that by tuning the driv-
ing rate to zero one has tuned the system to a critical
point. In fact, at zero driving rate, both closed systems
and open systems with injudiciously chosen boundary
conditions will not approach the singularity as the system
size diverges, and no interesting scaling will be seen.
Self-organized criticality arises, at least in many cases, as
a consequence of a singular diffusion coefficient in con-
junction with appropriate boundary conditions (or,
equivalently, driving mechanisms). The main point of
this paper is to examine what happens to the scaling of
the zero-driving-rate systems with nontrivial boundary
conditions when the driving rate becomes positive.

Here we consider extensions of the two-state models
and sandpiles to finite driving rates. In each case mass
transport is no longer instantaneous, and what previously
would have been individual avalanches may overlap. In
these extensions we consider models that, like the sand-
pile models, can be described in terms of local rules. We
expect that these extensions will be useful as we apply
these techniques to other more realistic models where
typically the separation of times scales is not infinite. At
finite driving rates the diffusion coefficient will no longer
be singular, although it can retain much of its structure.
We will show how a separation of time scales determines
the range over which nontrivial scaling is observed, with
a crossover to some other behavior at larger system sizes.
Because the extension to finite driving rates is not unique,
we explore various extensions, and find that quite
different behaviors are associated with different models.

The organization of the paper is as follows. In Sec. II
we describe generalizations of the two-state models to
finite driving rates and determine the associated diffusion
coefficients. We will focus on cases for which analysis is
possible (details are relegated to the Appendix). In Sec.
III we describe numerical analysis of these models based
on tracking the motion of tagged particles. Previously we
proved that in the case of infinitesimal driving rates, the
long-time behavior of tagged particles provides a con-
venient means of locating singularities in transport
coefficients. Here we examine both the long-time and

short-time behavior of tagged particles in the finite-
driving-rates models. The short-time behavior is the ana-
log of avalanches, and we observe a scaling crossover as
system size is increased. In Sec. IV we consider the gen-
eralization of a particular sandpile model to finite driving
rates where a diffusion coefficient with surprisingly rich
structure is found. We conclude with a summary of our
results in Sec. V.

II. GENERALIZATIONS OF THE
TWO-STATE MODELS

A. Two-state models

We begin with a description of the class of self-
organizing two-state models which were introduced and
studied in Ref. [6]. On a lattice of N sites (i=1,...,N)
at time ¢, sites are either occupied [A,(i)=1] or vacant
[A,(i)=0]. The system evolves according to the follow-
ing rules. At rate c(k) each 1 hops instantaneously to
the nearest vacant site to the left, where k is the distance
between the 1 and the vacant site. The same rule applies
for instantaneous jumps to the right. In Ref. [8] the case
c(k)=1, where the jump rate was independent of dis-
tance, was specifically considered, whereas in Ref. [6] the
more general case, where c(k) was a nonincreasing func-
tion of k, was considered.

The two-state models on a closed system with periodic
boundary conditions were analyzed rigorously. It was
proven that the usual diffusion scaling [12] led to a hy-
drodynamic limit in which the particle density p(z,x)
satisfies a diffusion equation of the form
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where as p— 1 the diffusion coefficient D(p) has a singu-
larity
D(p)~—— . @)
(1—p)¢
In Eq. (2) the order of the pole is related to the rate of de-
cay of the jump rates: when c(k)~k ™ for large k, we
have ¢=3—a for a = 0.

In these models jumps play the role of avalanches in
the sandpile models. When we say that jumps take place
instantaneously, it is the analog of viewing avalanches in
sandpiles as long-range interactions that take place in-
stantaneously relative to the rate at which sand is added
to the system. Here we will consider generalizations of
two of these models to the case where the jumps are no
longer instantaneous. We will focus our attention pri-
marily on the two-state model with ¢(k)=1/k, which we
will refer to as the 1/k model. We will also mention per-
turbations of the c(k)=1 model. It is important to note
that the reasons that we select these two is that in these
systems any transition can be thought of as iterating a lo-
cal rule, just as in sandpile models. In that sense, these
models may be viewed as the most realistic of the two-
state models. In addition, this feature will be useful when
we modify the model so that long-range transitions,
which used to take place instantaneously, now require
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finite time. For example, in the 1/k model one can think
of each 1 as hopping at rate one to a nearest-neighbor site
on the left or right with equal probability. If this site is
occupied then at rate A= oo the 1 executives a symmetric
random walk (SRW) until it hits a vacant site. It is easy
to show that the probability that a SRW starting at site
n =1 hits site k > 1 before it hits the origin is 1/k, which
is how the rates c(k)=1/k arise [13]. The limit A= o0 is
a formal device for indicating that these transitions over
occupied sites occur instantaneously. Similarly, the
¢(k)=1 model can be described in terms of local rules.
In this case, rather than executing a symmetric random
walk, the 1 performs a completely asymmetric random
walk in the direction of its initial hop.

Remark. To arrive at similar descriptions for models
with other transition rates [c(k)=1/k® where a+0,1]
in terms of local rules, one might suggest that iteration of
an asymmetric random walk (with probability p > 1 of
jumping away from the initial site) would give the desired
result. However, the resulting c(k) is given by
c(k)=(1—y)/(1—y*), where y=(1—p)/p. Conse-
quently, for large jump sizes k the rate c(k) approaches a
|

h(i)—h,(i)—1

0 if A, (i)=0
h(i+e)—h,(i+e)+1 at rate =

1 if h(i)=1
A if R ()22,

constant, and as a result the diffusion coefficient differs
insignificantly from that for c(k)=1. In both cases the
pole in D(p) is third order.

B. Extension to positive driving rate

We must now construct models with A <. This
amounts to making the long-range transitions (or
avalanches), which in the two-state models are instan-
taneous, take a positive time to occur. We do this by
viewing the long-range jumps as a sequence of nearest-
neighbor jumps which become instantaneous in the limit
A—oo. Unless explicitly stated otherwise, we will be
referring to the 1/k model. The appropriate generaliza-
tion is clear once we decide what happens when the
height at a site i exceeds 2: 4,(i)>2. We will examine
two natural generalizations:

A model. In this model, if 4,(i)= 2, then at rate A the
number of particles at the site i/ drops by one and the
number of particles at i —1 or i+ 1, selected randomly,
increases by one (i.e., a single particle hops). Specifically,
the rates are

(3)

where e denotes a symmetric random variable (i.e., e =21 with equal probability for each of the nearest-neighbor
jumps). The key feature of this model is that the transition rate is fixed at A for any site which is above threshold, and is
thus independent of how far above threshold the site may be.

nA model. In this model, the number of particles at a site drops by one at rate (n —1)A if h,(i)=n =2, so that the

transition rates are
0 if A,(i)=0
1 if h(i)=1

(i) —h,(i)—1
h(i+e)—h,(i+e)+1 3trate

(n—DAf b (i)=n>2,

with e defined above. The key feature of this model is
that the transition rate continues to increase with increas-
ing occupation of the site.

Of course, other finite-driving-rate extensions are pos-
sible. For example, we have also considered an alterna-
tive to the n A model above, in which sites with n > 2 par-
ticles drop at rate nA rather than (n —1)A. While both
versions sound very similar, the corresponding diffusion
coefficients differ in the neighborhood of the diffusion
singularity of the unperturbed model [14]. We have also
considered a jump rate of 1+4(n —1)A, so that the first
particle on a site continues to jump at rate 1, while all ad-
ditional particles jump at rate A. The hydrodynamics of
this model is very similar to our selected perturbation
above; however, the task of computing the diffusion
coefficient is substantially more complicated [15].

Remark. One should notice that A and n A versions are
possible for the c(k)=1 model, if e is changed to take a
fixed value +1 or —1 determined by the direction of the
initial jump. Note that we have lost the Markov proper-

[

ty, unless we append a spin to each particle indicating a
direction of motion, and, even after doing this, the pro-
cesses are not reversible—a fact which seriously impedes
analysis. This is not the case for the 1/k model, since the
direction of a supercritical 1 is randomly selected for
each jump. Consequently, the perturbations of the 1/k
model are simply specific forms of the zero-range process
previously studied in, e.g., Refs. [16,17]. These models
are mathematically tractable, and as a consequence we
are focusing almost exclusively on them.

C. Diffusion limits

We will now discuss hydrodynamic limits of the A and
n A versions of the 1/k model. The difference in the tran-
sition rates for the two versions will result in substantially
different behavior at densities exceeding unity.

A rigorous analysis of the nA version is given in the
Appendix, where we discuss the following theorem,
which we state after introducing a few essential facts.
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The content of the theorem is that, properly rescaled, the
particle density of the system is described by a diffusion
limit. Furthermore, as A— « the diffusion coefficient
converges to the singular diffusion coefficient of the origi-
nal two-state model for all densities p < 1.

We consider the systems on an N-site torus
Ty={1/N,...,N/N}. In the invariant measures
(equilibria) of each version of the 1/k model the distribu-
tions of the number of particles at two different sites are
independent and identical. Since particles are conserved,
there is a family of invariant measures indexed by the
particle density p =0, where p=E[h(i)] is the expected
number of particles per site. At a density p we will
denote the equilibrium distribution of the number of par-
ticles on each site by d,,(k), so that P(h,(i)=k)=d (k).
In the Appendix d,, is calculated explicitly in terms of the
transition rates.

The initial, nonequilibrium distribution of the system is
described by a density profile y(x), namely, each site is
initially occupied independently according to d,:
P(h(i/N)=k)=d,; (k). We denote by 7}, the path
measure of the process. The limiting diffusion equation
describes the relaxation of the nonequilibrium distribu-
tion to the invariant measure with the same average den-
sity. Since the particle system is discrete for any N, we
must make the convergence statement in the weak sense,
namely, via the action on smooth test functions.

Theorem. For the nA model there exists a function
D,,(p) (the diffusion coefficient) so that for any
G €C*T) (twice differentiable functions on the torus)
and any 6 > 0:

tht

lim 7% [

N-— o

L € €
N N N

>8]=0, (5)

— [ Gx)p(t,x)dx

where p(z,x ) is the solution of

% _ 3

)9p
dt  Ox

(6)

with initial condition p(0,x )=y (x).

Remark. The proof of this result follows directly from
the methods developed in Ref. [18] for coupled, nonlinear
diffusions. The A model is omitted in the theorem due to
the absence of exponential moment conditions needed in
the proof. However, we anticipate the validity of the
diffusion limit in this case also, and the associated
diffusion coefficient D, (p) can be identified. In the Ap-
pendix we summarize the calculations which lead to im-
plicit formulas for D, (p) and D,;(p) in terms of the tran-
sition rates. The basic properties of these diffusion
coefficients are described below.

In Fig. 1 we plot the diffusion coefficients D,(p) and
D,,(p). Note that for relatively small values of p both
diffusion coefficients mimic the behavior of the singular
(A= o0 ) diffusion coefficient D(p), which is also shown.
The singular diffusion coefficient diverges at p. =1; how-
ever, in both the A and nA models there is a crossover in
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FIG. 1. Diffusion coefficients for the 1/k model and the asso-
ciated A and nA models as a function of density p for A=8192.
For the 1/k model, D(p) has a second-order pole at p=1. At
small densities, D;(p) and D,;(p) mimic the behavior of D(p).
Above p=1, D, (p) and D,;(p) cross over to different behaviors,
and as p— o, D, —0and D,,—A/2.

behavior at p=p*(A)>p.. In the nA model the crossover
is to linear diffusive behavior, where D,;(p) is nearly con-
stant, while in the A model there is a peak in D, (p) at p*,
followed by a sharp decline. In each case the value of D
at the crossover is proportional to A, and as A— o we
observe that p*—p_, as one would expect. These facts
are summarized in the following results, which are de-
scribed in more detail in the Appendix.

(a) D, (p) and D,,(p) converge to D(p)=1(1—p)" % as
A— oo forall p<1.

() lim,_, D ,,;\(p) 3A; lim,_, ,D;(p)=0 [more pre-
cisely, lim,_, .,p D, (p)=11].

(c) For the A model, letting p* denote the location of
the maximum of D,(p) as a function of p, we have
P* ~14A" 1/3'

The qualitative difference between the diffusion
coefficients of the A and nA models is easily understood.
We emphasize this difference as it elucidates the fact that
extensions of self-organizing models to finite driving rates
can be made in many ways, and the behaviors of the vari-
ous extensions are by no means guaranteed to be the
same. In the nA model a crossover to simple linear
diffusion is seen as follows. When a site is occupied by
n 22 particles, the jump rate per particle is (n —1)A/n,
so that as n becomes large this rate becomes independent
of n; i.e., interactions decrease. In other words, in the
high-density limit particles are essentially executing ran-
dom walks at a transition rate A, with the resulting limit-
ing value of D being 1A.

In contrast, for the A model, when a site is occupied by
n =2 particles the jump rate per particle is A/n. So, as
the density increases the mobility of individual particles
actually decreases. To understand the impact of this on
the diffusion coefficient, recall Fick’s law, namely, that
the diffusion coefficient D relates the linear response of
the flux I to the density gradient e: to leading order
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I ~eD. In the A model, because the transition rate is in-
dependent of n for sites with n =2 particles, the only net
contributions to the flux arise from adjacent sites, at least
one of which is occupied by fewer than two particles. As
the density increases these sites become increasingly rare.
Therefore the flux and the diffusion coefficient decrease to
Zero as p— oo.

Remark. As previously stated, for the corresponding
diffusion descriptions of perturbations to the c(k)=1
two-state model, the lack of reversibility impedes
rigorous analysis. Nevertheless, one would expect that
the diffusion coefficient would have a similar appearance
for small densities, with more rapidly increasing D, (p)
and D,,(p) for p <p*, in accord with the higher-order
singularity when A= . However, we expect that the
large-density asymptotics of the diffusion coefficient for
the nA version of this system differs substantially from
the diffusion coefficients associated with the correspond-
ing perturbations of the 1/k model. For perturbations of
the c(k)=1 model, once a particle starts hopping in a
given direction, it continues in that direction until it hits
an empty site. At high densities empty sites become in-
creasingly rare so that rather than approaching a limiting
constant the diffusion coefficient should increase without
bound as p— 0.

D. Density profiles on the open driven systems

Next, as we did previously for the two-state models in
Ref. [8], we apply the results obtained here for the closed
system to the open system with appropriate boundary
conditions. In particular, we solve

dp _ d

y4p
dt dx

P) s (7)

to obtain the steady-state profile (dp/dt =0) subject to
the boundary conditions p(1)=0 and p'(0)D(p(0))
=—aN=—ay. As before, the second condition arises
from the input flux at rate a at the origin in the (unres-
caled) discrete model. The factor of N comes from the
diffusion scaling [8] [(flux)=(mass)(rate)=N ~!N2=N].
First, we describe the solution to the boundary-value
problem for the unperturbed systems with singular
diffusion limits.

Behavior of the two-state models (A= o)

In the two-state models with a diffusion singularity of
the form D(p)~1(1—p)~? (the factor of 1 is inserted for
consistency with the finite-driving-rate versions, in which
particles select a direction to move with probability 1
each) we obtain a solution for ¢ > 1 of the form

p(x)=1—[14+2aN(¢—1)(1—x)] /¢ (8)

which is illustrated for the 1/k model (¢=2) in Fig. 2(a)
for a variety of system sizes N. Note that the increase in
the effective driving rate ay with system size N leads to
profiles which approach the singularity at p=p,=1 as
N — . To satisfy the boundary condition at x =1 there
is a boundary layer with width of order 1/N at the open
edge of the system.

Behavior of the A and n\ models. For the A < oo mod-

els, the same boundary conditions again lead to an in-
creasing average density with increasing system size (see
Fig. 2). Notice that at low densities the profiles of both
the A and nA models are nearly indistinguishable from
the A= o0 case, which is consistent with similar behavior
in the diffusion coefficients observed in Fig. 1. However,
as N increases we begin to see departures of the A and nA
models from the corresponding two-state model and from
one another, which reflect the differences in the diffusion
coefficients at high densities. In each case, the crossover
behavior sets in when the system size is of order A!/?, at
which point the fact that A is finite will begin to affect the
dynamics significantly and lead to overlapping events.
To see that this is the appropriate scaling of the cross-
over, note that when A= o, the average density scales as
p~1—1/N, so that the average distance between 0’s is of
order N. A random walker takes of order N2 jumps to
move a distance N, implying that a typical “event” for
the A< o model requires an average time of NZ2/A.
Therefore one would expect to see many supercritical
sites (overlapping events) when N ~A!/2,

One can also estimate the crossover using the hydro-
dynamic limit. The constant flux condition, which is
satisfied at each point x in the stationary solution, can be
applied at the right edge x =1. That, along with the open
edge condition p(1)=0, implies the existence of a bound-
ary layer of thickness ~1/N. Specifically, for any fixed
number p<1, the location x, at which p(xﬁ)ZfJ‘ scales
like x ;~1 —b /N with b a constant. If we take p close to
unity then for the n A model across the rest of the system
(0=x <1—b/N) the linear diffusion equation is a good
approximation and the flux condition becomes

Ap'=—aN , 9

where we have substituted the asymptotic form of the
diffusion coefficient D(p)=1A. So, away from the bound-
ary layer we have

2aN

p(x)~~k—[1—x]+ﬁ—ﬂ

N

namely, a linear decay starting from the left edge. Com-
paring this to the stationary solution for the two-state
model (8), we see that corrections to the density p(x)
from the A= o profile are of order N /A. Crossover
occurs when the profile exceeds unity. The fact that the
unperturbed profile scales like 1 —1// implies once again
that the crossover occurs when A~ N2,

In the A model with the boundary conditions specified
above, similar arguments reveal that as N increases a re-
gion of extremely high density develops at the left side of
the system. In fact, beyond some critical system size the
density diverges with time and no stationary solution ex-
ists. The essential change is that, instead of (9), one has

) (10)

izp'zaN : (11)
2p

Integrating toward x =0, one finds that the solution be-
comes singular when aN > 1A. In fact, it is easy to prove
the absence of a stationary solution when the system size
exceeds A /2a:
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Claim. Given the boundary conditions above, no sta-
tionary solution for the A model exists when the system
size exceeds N, =A/2a.

To prove this, let #(k ) denote the rate at which a parti-
cle leaves a site with k particles [r(k)=1 when k=1;
r(k)=A when k > 1], and if we let P;(k) denote the prob-
ability that site i has k particles in a stationary state, then
the flux between neighboring sites must be a:

13 Pk)r(k)—4 3 P (k)r(k)=a (12)
k=1 k=1
for1<i<N—1,and
1 3 Pylkr(k)=a (13)

at the open edge. Solving backwards from site N we find

13 P(k)r(k)=Na. (14)
k=1

Finally, note that we have an upper bound of A for the
sum, which implies that for any N > A /2a no stationary
solution exists.

In simulations particles continue to pile up, leading to
a diverging density. This is another manifestation of the
decreasing mobility of individual particles with increas-
ing density seen first in D,(p) (Fig. 1). For this reason
the A model with these boundary conditions is ill-posed
for large system sizes. Of course, this behavior can be
avoided by specifying different boundary conditions, such
as fixed densities at both sides, although this will be de-
void of the crossovers that we are studying. One motiva-
tion for studying the A model is that the associated
diffusion coefficient is in some ways quite similar to that
of the perturbation of the sandpile model that we consid-
er below, which also exhibits similar difficulties at large
system sizes.

Finally, on the open system the differences between the
three models—the two-state model and the associated A
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FIG. 2. Density profiles for the open systems. (a) Our analytical solutions for the 1/k model with appropriate boundary condi-
tions, for N=2,4,8,16,...,16384 and a=1. The lowest curve corresponds to the smallest value of N, and the density increases
monotonically with increasing N. (b) and (c) The corresponding results for the A and nA models, respectively, with A=8192. While
one would not expect hydrodynamics to hold on the smallest of these system sizes, we can still construct analytical profiles. For
small values of N we observe similar scaling in all three models; however, at system sizes N ~A!/? we begin to see crossover behavior
which is associated with the fundamental differences in the associated diffusion coefficients (Fig. 1). No solution can be obtained for

the A model when N > A /2a.
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FIG. 3. Average density as a function of system size N for
the 1/k model and the associated A and nA models (A=8192).
The average density is derived from the analytical calculations
which also lead to the profiles illustrated in Fig. 2. For small N
all three models behave the same. However, for large N in the
1/k model the density approaches unity, in the nA model the
density scales with N, and in the A model the density diverges
when N=A1/2a.

and nA models—is summarized by considering the
system-wide average density p as a function of N, as illus-
trated in Fig. 3. For relatively small system sizes all three
models behave similarly, following the behavior of the
two-state model, which was seen previously to scale as

p~1—1/NVé-D (15)

In the two-state model p approaches the critical point
p.=1 as N— . However, for the A model we have
shown that the density diverges with time when the sys-
tem size is too large (of order A). Finally, for the nA
model we have shown that there is a crossover at
N =x'/? beyond which

— aN

As we will see in the next section, these scaling crossovers
are also manifested in other aspects of the dynamics.

III. TAGGED PARTICLES AND
SCALING CROSSOVERS

One numerical method that can be used to identify
singularities in transport coefficients in these and other
diffusive systems involves introducing and subsequently
monitoring the decay of small amplitude perturbations
[8]. In particular, on a closed system with periodic
boundary conditions for any density of the conserved
quantity p, there is a translation-invariant equilibrium
with density p to which the system relaxes from other ini-
tial distributions. When a small amplitude perturbation
is introduced, it is easily verified from the linearized ver-
sion of Eq. (7) that each Fourier mode of the perturbation
relaxes to zero exponentially at a rate proportional to
D(p). Thus by varying the average density p of the initial

condition the density dependence of the diffusion
coefficient can be extracted.

In our previous analysis we have used this relaxation
method extensively; however, it is not without its
difficulties in implementation. These are primarily asso-
ciated with the fact that it is intrinsically a nonequilibri-
um measurement. For example, care must be exercised
to guarantee that perturbations are small enough to
remain in the linear regime, which at densities near a
singularity makes the decay of the perturbation more
difficult to measure. In this section we use the behavior
of tagged particles to explore various aspects of the dy-
namics of the systems studied in Sec. II. Monitoring the
long-time behavior of tagged particles provides an alter-
nate method of locating singularities in the transport
coefficients. This method is typically much more con-
venient than the method described above because the
analysis takes place while the system is in equilibrium. In
addition, the short-time behavior of tagged particles pro-
vides an analog of the distribution of avalanches, which,
unlike individual avalanches, is easily generalized to finite
driving rates.

We begin by considering the long-time behavior. For
the two-state models it was previously shown that the dy-
namics of a tagged particle suitably rescaled converges to
a Brownian motion B,, where the variance
02=(1/t)E(B}) depends on the density and diverges as
the density approaches the critical point [19]. The scal-
ing of o2 for the class of two-state models with distance-
dependent jump rates c(k)~1/k® can be (nonrigorously)
deduced from the following calculation of the expected
square jump size
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FIG. 4. Long-time behavior of tagged particles in the A (+)
and nA (X) models for A=128 on the closed system. We plot
the variance o*(p) of the tagged particles as a function of p.
Note that in each case the structure of 0*(p) mimics the behav-
ior of the corresponding diffusion coefficient shown in Fig. 1 (a
different value of A is taken in Fig. 1). A calculation analogous
to (17) for the two-state model yields a formula for the tagged
particle variances for both the A and nA models:
op)=[Sr-or(k)d,(k)1/[Zr_ok d,(k)], from which the
respective properties can be determined analytically.
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op)= 3 K2e(k)pt 1—p)~——— . (7)
i (1—p)°
The fact that the limiting distribution of the position of a
tagged particle is a Brownian motion with variance o? is
established in Ref. [19], and is summarized in the follow-
ing theorem.

Theorem. Consider any of the two-state models with
jump rate c(k)=k % a>0, on the integer lattice Z with
initial distribution v, (product measure at density p) con-
ditioned on the event that there is a particle at the origin.
Denote the location of this tagged particle at time ¢ by x,.
Then €x -, converges weakly as €—0 to a Brownian
motion B, with variance o2 given in (17).

Remark. The order of the singularity in o is one less
than that found for the corresponding diffusion
coefficient D(p)~1/(p, —p)?, where =3 —a.
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tagged particles. (a)

We now use tagged particles to study the A and nA
models introduced in Sec. II. In numerical simulations
we tag a particle (or, to accelerate convergence, tag all of
the particles) and accumulate data for the distribution of
displacements at time ¢t =T (T large) relative to the initial
position at t=0. Next we repeat this calculation for a
variety of densities p. Our results for 0%(p) are plotted in
Fig. 4. Comparing these results with our analytical re-
sults for the diffusion coefficient D(p) illustrated in Fig.
1, we see that the qualitative differences between the A
and nA models seen first for D(p) are preserved when we
study tagged particles: at a density p*(L)>p, there is a
crossover from a rapidly increasing 0%(p) to a relatively
constant 0%(p) in the nA model and a decreasing o(p) in
the A model. As previously noted for the case of infinite
driving rates, the singularity of 0%(p), or in this case the
rate of increase in 0%(p) before the crossover at p*, will
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Results for the 1/k model for system sizes

N=16,32,64,128,256,512,1024. We plot the probability of moving a distance r in a time T"=0.5 (which corresponds approximately
to the amount of time it takes for roughly half of the particles to attempt one event). To eliminate edge effects we consider only parti-
cles which are in the middle half of the system. We omit the probability of not moving, and normalize the remaining probabilities.
(b) shows that the finite-size scaling form, which is derived analytically for the distribution of events in this model, also gives a good
fit to the short-time behavior of tagged particles. (c) Short-time behavior of tagged particles in the nA model for A=8192 and the
same range of system sizes. For larger system sizes we begin to see the crossover to simple linear diffusion where the distribution is
independent of N. (d) Finite-size scaling fit used in (b) applied to the nA model. Note that the smallest systems (up to about 64) col-
lapse fairly well, but for the biggest systems the deviations become substantial.
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be one order less than the corresponding divergence or
increase in D(p). Thus we are not gaining new informa-
tion by this technique. Instead, the long-time behavior of
tagged particles provides an alternate and more con-
venient method to determine the structure of the
diffusion coefficient for various systems. In particular,
this is the method we use in Sec. IV when we study sand-
piles at finite driving rates.

The Brownian motions described above are obtained
only in the limit of long times (many jumps). It is in-
teresting to note that the short-time behavior of tagged
particles looks quite different and reflects features, in par-
ticular, scaling properties, which are associated with indi-
vidual avalanches. Here we consider the open system,
where the density increases with system size (Fig. 3). In
Ref. [8] we let P(k,N) denote the probability of a jump
of size k, and found that in the two-state models this dis-
tribution exhibits finite-size scaling with exponents which
could be calculated exactly. In the two-state models it is
reasonable to expect, and we have confirmed numerically,
that the probability P(r,N) that the tagged particle on a
system of size N has moved distance r after some short
time T has essentially the same scaling [see Figs. 5(a) and
5(b)]. For the A and nA versions of the 1/k model, we
find that as long as the density is small, P(r,N) satisfies
finite-size scaling with the same exponents as the 1/k
model. This is illustrated for the nA model in Figs. 5(c)
and 5(d). However, as in the steady-state profiles dis-
cussed in the preceding section, crossovers are observed
when N=0(A!"?). For larger system sizes departures
from finite-size scaling are observed, and for N
sufficiently large, the n A model has a crossover to simple
linear diffusion, where P(r,N) is independent of system
size N.

IV. SANDPILES AT FINITE DRIVING RATES

In this section we apply our previous techniques to a
finite-driving-rate generalization of the one-dimensional
limited local sandpile model introduced in Ref. [2]. This
particular sandpile model has been studied in a variety of
contexts because it has certain simplifying features which
make it somewhat more tractable analytically and numer-
ically [7,10,11,20]. The rules of the automaton in the lim-
it of infinitesimal driving rates are as follows. Each site
on the one-dimensional integer lattice has associated with
it an integer height A (i) which describes the number of
grains of sand. The slope associated with each site
z(i)=h(i)—h(i+1) is a conserved quantity on the
closed system. Sand is added one grain at a time to a ran-
domly chosen site i, so that z(i)—z(i)+1 and
z(i—1)—z(i—1)— 1. If after adding the grain the slope
at site / is above a specified threshold z(i)>z,, then an
avalanche is triggered and m grains fall to the neighbor-
ing site i + 1. Consequently,

z(i)—z(i)—2m ,
z(i+1)—z(i+1)+m ,
z(i—1)—z(i—1)+m .

This relaxation mechanism is iterated: each site which is

above the threshold z, simultaneously topples. The
avalanche stops when all sites are below threshold, and
only then will another grain be added to the system.
There are two integer parameters for the model, z, and m
(z, is a trivial parameter in that it sets the mean slope of
the system but has no effect on the distribution of events).
However, as long as m =2 it has been demonstrated that
different choices of parameters lead to models which are
in the same universality class [2], so from here on we will
take z, =m =2. The evolution of the slope configuration
is well defined on a closed system (an N-site torus) for all
configurations in which an avalanche does not traverse
the entire system. On an open system the rules are
modified at the boundaries; typically the system is closed
at the left edge i =1, so that no sand can leave the system
from that side, and open on the right edge i =N, where
sand can flow out of the system. It is interesting to note
that, in terms of slope, the left edge is actually the open
edge since there can be no net increase or decrease in the
total slope of the system unless the site i =1 changes
height. This is clear when one notes that the average
slope in the system is Z=h(1)/N.

Previously we showed numerically that this model is
described by a singular diffusion equation analogous to
Eq. (7) in which the analog of p is the slope density s and
the order of the diffusion singularity is $ =4. Subsequent-
ly this result was obtained analytically using scaling argu-
ments and certain special features of this model [10]. In
this section we examine what we believe to be the most
natural generalization of the model to finite driving rates
(another generalization was considered in Ref. [20]). In-
stead of adding grains to the system only after the
avalanche is complete, we add grains at a constant rate.
More precisely, at each time step all supercritical sites
topple simultaneously, and to each site a grain of sand is
added independently with probability 6 > 0. In our previ-
ous notation, A=1/8, so that as A— o we retrieve the
original (infinitesimal-driving-rate) sandpile model. Note
that in this generalization, as well as in the original sand-
pile model, sites which are above threshold topple at a
fixed rate regardless of how far above threshold they are,
and when they topple a fixed number of grains of sand
move. Thus we may expect the behavior of this system to
be more analogous to the A model than the nA model dis-
cussed previously.

To analyze the behavior of this model we use the long-
time behavior of tagged particles. In Fig. 6 we plot o%(s)
as a function of the average slope s for the closed system.
This is compared with the A= o0 result, where we ob-
serve a third-order singularity in o?(s) at the critical
slope s =s,=3. Here we use a subscript 1, as there will
be another critical value of the slope later. Notice that,
like the two-state models previously discussed, the order
of the singularity in o? is one less than that of the
diffusion coefficient. Also, note that for small values of s
the behavior for finite A mimics the singular behavior ob-
served for A= . As in the A model, here we observe a
sharp peak in o%(s) at a value s¥(A)>s,. Furthermore,
we observe that s{ —s; as A—> 0.

The most striking feature in o?(s) for the finite-
driving-rates sandpile model is the double-peak structure.
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FIG. 6. Variance of tagged particles in the limited local sand-
pile for A=0o0 (X) and A=200 (+). For A= the variance
has a cubic divergence at a critical slope s; = % For A=200, we
see the double peaks which are relics of the divergences at %
and 7 discussed in the text.

This was not seen in either of our generalizations of the
1/k model. Here the second peak occurs at a density
53 (A), which converges to s,=7 as A— . To explain
this behavior, we first recall that in the unperturbed sand-
pile models, troughs [sites with slope z(i) <z, —m ] play a
key role in understanding the system. It was proven [7]
that troughs bound avalanches. Moreover, an avalanche
has the effect of removing m units of slope from each of
two sites in the interior of an interval, and depositing the
slope at the two boundary troughs. On a closed system
the density of troughs vanishes as the slope density in-
creases to the critical slopes s, =3. This implies that the
length scale on which the slope is transported diverges as
the slope increases to s, which explains the singularity in
the diffusion coefficient. These ideas have been developed
more fully in Ref. [10]. For the sandpile with finite driv-
ing rates, we begin by noting that at high slope density
(that is, when most sites are toppling) the pertinent con-
cept is one of antitroughs. These sites have slope
z(i)>z,+m, so that even after one relaxation they are
still supercritical (troughs were still subcritical after one
relaxation of a neighboring site).

In our finite A extension of the sandpile model, two ad-
Jjacent supercritical sites have no net exchange of slope.
Using this convention, the model is well defined for any
slope density, and configurations in which all sites have
slope z(i) >z, are stable. The key observation to make is
that there is a reflection symmetry about slope 2: any
configuration run through the mapping z(i)—5—z(i),
evolved according to the old rules, and reflected again,
yield the same configuration as that obtained by merely
evolving the configuration. The singularity which exists
at s=71 in the limit of A— 0 is an immediate conse-
quence of this symmetry and the existence of the singu-
larity at 2.

The steady-state profile of the finite-driving-rates sand-
pile model on an open system can also exhibit the in-

teresting structure observed in the long-time behavior of
tagged particles on the closed system. In Fig. 7 we plot
the time-averaged profile of the sandpile model with fixed
A=200 for varying system size. As with the two-state
model and its generalizations, here we see that on the
open system the average slope density increases with in-
creasing system size (the is due to an effective forcing
which scales with N rather than an increasing flux). We
will refer to the left edge as open, as this is the boundary
through which slope can flow (it is closed to sand), and
we will refer to the right edge as closed.

For smaller systems the profile resembles the A= oo
case in which most of the system has a nearly constant
slope s approaching s, with a boundary layer near x =0.
However, as N increases the density increases, and even-
tually when N is of order A we begin to explore the dou-
ble peak structure of o(s). As illustrated in Fig. 7, for N
of order A the profile has two nearly level regions, the
first near the open edge at a density near s, and the other
near the closed edge at a density near s,. There contin-
ues to be a boundary layer at x =0, and a discontinuity at
x =1 (the point x =1 is anomalous and is omitted in Fig.
7). In addition, there is a sharp transition which
separates the two level regions somewhere in the middle
of the system. The position of this crossover depends on
system size, and decreases towards x =1 as the system
size N increases in order to accommodate the increasing
slope density in the system.

This behavior can be understood by thinking about the
particle current, which determines the toppling rate. The
particle current is not constant throughout the system.
Since particles are added everywhere, the particle flux
through a site is proportional to its distance from the
closed edge, and this implies that the toppling rates of the
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FIG. 7. Profiles of slope for the A version of the limited local
sandpile model, with A=200 and system sizes N =50 (the
lowest profile), 100, 150, 200, 250, 300, 350, 400, and 450 (the
highest profile). For the larger values of N we see two nearly
flat regions corresponding to the two peaks in the diffusion
coefficient of the model. The last two profiles, as well as the
profile for system size N =800, are seen to collapse on top of
each other, except for the point at x =1 which is not stationary
for N >2A.
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various sites are not constant. By construction, the max-
imum particle current off of the open edge is m =2, so
that if the total input rate N /A exceeds 2, any excess sim-
ply raises the total height of the sandpile. When N =24,
the last site must always be supercritical. The site at N /2
where the particle current is unity must be supercritical
on average half of the time. The symmetry that we have
just discussed implies that at a slope of  sites are super-
critical on average half of the time. This means that the
sites between 1 and N /2 will be near the lower singulari-
ty of %, and the sites between N /2 and N will be near the
upper singularity of I (with a boundary layer near N /2).
For system sizes N >2A there is not steady-state height
configuration. However, aside from x =1 (the open edge
for sand at site V) where the slope diverges with time,
the slope is well defined and has a stationary distribution
which appears to be essentially the same as for the system
where N =2A.

V. CONCLUSIONS

In this paper we have introduced and studied finite-
driving-rate generalizations of models which exhibit self-
organized criticality in the limit of infinitesimal driving
rates. In each case we have defined A=(local transition
rate)/(external driving rate). Here A defines the separa-
tion of time scales in the models, and the original models
ar retrieved in the limit A— oo. For finite A there may be
flexibility in how one defines perturbations of the original
model which can lead to drastically different behavior, as
observed in the case of the A and nA perturbations of the
two-state model.

As for the self-organizing models, at finite driving rates
boundary conditions play a crucial role. In the cases we
have studied here, the boundary conditions lead to a
monotone increase in the density with increasing system
size. Consequently, for smaller systems, the steady-state
profile and the scaling of the short-time, tagged particles
mimic the behaviors typically found for models exhibit-
ing self-organizing criticality. However, as system size,
and therefore density, increases one observes a crossover
to different behavior. Furthermore, as in the case of the
sandpile model studied, this new behavior can be non-
trivial. The range of system sizes for which SOC-like
scaling is observed depends on A, with a crossover occur-
ring when there is appreciable probability that events will
overlap.

In all of the cases we have studied here, we have as-
sumed A is fixed, and studied variations in the behavior of
the system as its size N is increased. This seemed to us to
be the most natural way to discuss extensions of these
systems to finite driving rates. However, other scalings
and the resulting limiting behaviors can also be studied.
For example, Hwa and Kardar have also considered a
finite-driving-rates generalization of the limited local
sandpile model [20]. However, they studied the system
with a fixed (small) current. In our terminology this
amounts to choosing A = N, while we have considered the
behavior as N diverges with A fixed. In their case the
driving rate vanishes as the system size diverges. As a
consequence the behavior associated with the double-

peak structure we found in o(s) could not be discerned in
their limit.
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APPENDIX

We begin with a discussion of the rigorous hydro-
dynamic limit which can be derived for the nA version of
the 1/k model. Both the A and the nA models are rever-
sible with respect to one-parameter families of extremal,
invariant measures indexed by the local density. First we
discuss the form of the invariant measures for the general
class of zero-range processes, which includes both of
these systems.

Invariant measures

The state space of these models is {Z " }Z, so that each
site on the integer lattice is either vacant or occupied by
some number of particles. We will denote the
configuration at time ¢ by §,. Letting r(k) denote the
rate at which a site with height k loses a particle in any
zero-range process, in equilibrium v, the states of
different sites are independent and
Bk

IIi=ir(n)

where @ is a normalizing constant and [ is a parameter
which determines the density; one must have
B<liminfr(k)[16]. A more convenient way to write v,
is to let

v(Ci)=k}=0 , (A1)

k
Ek)=In| ][] r(n) (A2)
n=1
and set a= Inf3, so that
vo{ & (i) =k} =weka5K) (A3)

The local density p of v, is a function of the parameter a.
We will need to know a(p) in order to find D(p). To cal-
culate p(a), let

M(a)=S eka=ék) (A4)
k=0
and
Pa)=1nM(a),
so that the density (the expected occupation number of a

single site) corresponding to the invariant measure v, is
given by



104 J. M. CARLSON, E. R. GRANNAN, AND G. H. SWINDLE 47

zlzozokeka*qﬁ(k)

3 e ka9 (AS5)

pla)=¢'(a)=
The function p(«a) is nondecreasing. This can be seen by

differentiating to obtain

Mn _
M

M
M

p'la)= z0, (A6)

where the last inequality follows from Holder’s inequali-
ty. When p(a) is a strictly increasing, continuous func-
tion, inverting yields

a=)"Yp) . (A7)

Hydrodynamic limits

The transition mechanism is symmetric for both the A
and nA models, and we expect the existence of a deter-
ministic limit under diffusion scaling for these processes.
Furthermore, diffusion coefficients should converge to the
singular diffusion coefficient mentioned above as we take
A— o0, since, at least formally, by setting A= o in both

systems one recovers the two-state model with
c(k)=1/k. This is the content of this section.
A zero-range process on the N-site torus

Ty={1/N,...,N/N} has asagenerator
Lyf(§)=1 3 N*r(§G /NN (> ") =2f(O)+F(n")],
IE‘T
(A8)
where
E(k), k+#i, il
EEk)= {6t —1, k=i (A9)
SUED)+1, k=itl.
Any initial distribution of the system can be written in
terms of a density fy with respect to ®y(£)
=1T1M- e 5" that is to say, initially the probability of

seeing a given configuration § if fy(§)®y(E). The fol-
lowing conditions must hold. The first condition states
that the initial distribution must converge to an initial
density y(x) as the system size N diverges. The second
condition controls the entropy of the initial distribution.
If we state that each site i /N is independently occupied
according to product measure at the local density
y(i/N), where y is a continuous function, then both con-
ditions (i) and (ii) hold:

(i) There exists an y(x) so that for all GE CXT) and
for any 6 >0,

>8 |=0, (A10)

where P denotes the probability measure f’ vPw-

(ii) The following entropy bound holds for the initial
distribution:

[ fyIn(fy)®y<CN . (A11)

Theorem. Consider the nA version of the 1/k model.

Assume that conditions (i) and (ii) hold, and let
h(p)=(¢')"Xp). Let p(t,x) be the solution of
% _ 98 9 Al2
dt  Ox (p) ox ( )
with
D(p)=1h'(p)e"® (A13)

with initial condition p(0,x )=y(x). Then, for any >0,

lim 2" L g‘, —L L
N—oo N £ N N

— [Gxple,x)|>8 =0,  (A14)

where 2" In denotes the measure on the path space

D([0,T),{Z *}F) with initial distribution fy® .
Remarks on Proof. With minor modifications the proof
of this theorem follows that of Ref. [18], which estab-
lishes diffusion limits for systems which are essentially
continuous versions of the zero-range process. The dis-
tribution of the single-site occupation number for the nA
version has sufficiently strong exponential tails for the
method to work. This is not the case for the A model.

Calculating D(p)

This is an unpleasant task, for which there is no
guarantee of getting a closed-form solution. In fact, for
the nA model we obtain transcendental equations rather
than an explicit solution.

A model. Although the A model was lacking exponen-
tial moments needed for the rigorous result stated above,
we can still proceed to formally calculate the diffusion
coefficient for this system. In this case we have r(k)=A
for Kk 22 and r(1)=1. Therefore,

0, k=0,1
)=k —)In(r), k=2 (A15)
so that
_AB
Ma)=1+—— —p (A16)
where B=e% With ¢y = In[M(a)], we see that
AL
=14 = A17
V= B —BTAB) (Al7
from which one obtains
hip)=[¥'] Xp) . (A18)
Implicit differentiation yields
1
hp)=——r—"—7=, A19
= T alpn] (A19)

yielding
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D(p)=1y"(alp))] ™ . (A20)
The unpleasant result of these computations is plotted in
Fig. 1.

To establish convergence to the singular diffusion for
densities less than unity, expansions yield

B 1 ’" B 1

- Ll w=—B 10|l |, a2
1+B AP (1+p)? A

from which it follows that D,;(p)~1(1—p)~2 To

confirm the high-density limit of D, (p), observing that in
the A model p— « corresponds to BTA, we have from
(A17) that B~(Ap)/(1+p). Inserting this into (A20) and
expanding yields the desired result:

D (p)~—> . (A22)

2p?
Additionally, the asymptotic behavior of the location of
the maximum of the diffusion coefficient and the value of
D, (p) at the maximum as the driving rate A diverges can
be extracted from (A20) yielding

Pmax=1+tA"12+0O(A 7?7,

D(Pray) =1A—3A+0O(A7) . (A23)

nA model. In this case we have r(n)=(n—1)A for
n =2 and r(1)=1. Therefore,

0, k=0,1
SR lnfke—1me =1, k22 (A24)
so that
M(a)=1+pBeP* | (A25)
where again f=e“ and
p=¢'(a)=——§ffi:(b)b;:/);; (A26)

The diffusion coefficient is obtained via (A20).

Convergence of D,;(p) to the singular diffusion
coefficient for densities less than unity follows from ex-
pansions which are the same to leading order as in the A
model in (A21), from which it follows that
D,;(p)~1(1—p)72 To confirm the high-density limit of
D,,(p), observing that in the nA model p— o corre-
sponds to 3— o, we have from (A26) that B~ Ap, and
Y’ ~B/A, from which it follows that D,;(p)~ +A.
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